Additive number¶
Time: O(N^3); Space: O(N); medium
Additive number is a string whose digits can form additive sequence.
A valid additive sequence should contain at least three numbers.
Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.
Given a string containing only digits ‘0’-‘9’, write a function to determine if it’s an additive number.
Note:
Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.
Example 1:
Input: num = “112358”
Output: True
Explanation:
The digits can form an additive sequence: 1, 1, 2, 3, 5, 8.
1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8
Example 2:
Input: num = “199100199”
Output: True
Explanation:
The additive sequence is: 1, 99, 100, 199.
1 + 99 = 100, 99 + 100 = 199
Constraints:
num consists only of digits ‘0’-‘9’.
1 <= len(num) <= 35
Follow up:
How would you handle overflow for very large input integers?
[1]:
class Solution1(object):
def isAdditiveNumber(self, num):
"""
:type num: str
:rtype: bool
"""
def add(a, b):
res, carry, val = "", 0, 0
for i in range(max(len(a), len(b))):
val = carry
if i < len(a):
val += int(a[-(i + 1)])
if i < len(b):
val += int(b[-(i + 1)])
carry, val = val // 10, val % 10
res += str(val)
if carry:
res += str(carry)
return res[::-1]
for i in range(1, len(num)):
for j in range(i + 1, len(num)):
s1, s2 = num[0:i], num[i:j]
if (len(s1) > 1 and s1[0] == '0') or \
(len(s2) > 1 and s2[0] == '0'):
continue
expected = add(s1, s2)
cur = s1 + s2 + expected
while len(cur) < len(num):
s1, s2, expected = s2, expected, add(s2, expected)
cur += expected
if cur == num:
return True
return False
[3]:
s = Solution1()
num = "112358"
assert s.isAdditiveNumber(num) == True
num = "199100199"
assert s.isAdditiveNumber(num) == True
num = "1"
assert s.isAdditiveNumber(num) == False